A Graphical Model Approach to Source Localization in Wireless Sensor Networks
نویسندگان
چکیده
Collaborative localization and discrimination of multiple acoustic sources is an important problem in Wireless Sensor Networks (WSNs). Localization approaches can be categorized as signal-based and feature-based methods. The signal-based methods are not suitable for collaborative localization in WSNs because they require transmission of raw acoustic data. In feature-based methods, signal features are extracted at each sensor and the localization is done by multisensor fusion of the extracted features. Such methods are suitable for WSNs due to their lower bandwidth requirements. In this paper, we present a feature-based localization and discrimination approach for multiple harmonic acoustic sources in WSNs. The approach uses acoustic beamform and Power Spectral Density (PSD) data from each sensor as the features for multisensor fusion, localization, and discrimination. We use a graphical model to formulate the problem, and employ maximum likelihood and Bayesian estimation for estimating the position of the sources as well as their fundamental and dominant harmonic frequencies. We present simulation and experimental results for source localization and discrimination, to demonstrate our approach. In our simulations, we also relax the source assumptions, specifically the harmonic and omnidirectional source assumptions, and evaluate the effect on localization accuracy. The experimental results are obtained using motes equipped with microphone arrays and an onboard FPGA for computing the beamform and the PSD.
منابع مشابه
A multi-hop PSO based localization algorithm for wireless sensor networks
A sensor network consists of a large number of sensor nodes that are distributed in a large geographic environment to collect data. Localization is one of the key issues in wireless sensor network researches because it is important to determine the location of an event. On the other side, finding the location of a wireless sensor node by the Global Positioning System (GPS) is not appropriate du...
متن کاملRule-based joint fuzzy and probabilistic networks
One of the important challenges in Graphical models is the problem of dealing with the uncertainties in the problem. Among graphical networks, fuzzy cognitive map is only capable of modeling fuzzy uncertainty and the Bayesian network is only capable of modeling probabilistic uncertainty. In many real issues, we are faced with both fuzzy and probabilistic uncertainties. In these cases, the propo...
متن کاملImprove range-free localization accuracy in wireless sensor network using DV-hop and zoning
In recent years, wireless sensor networks have drawn great attention. This type of network is composed of a large number of sensor nodes which are able to sense, process and communicate. Besides, they are used in various fields such as emergency relief in disasters, monitoring the environment, military affairs and etc. Sensor nodes collect environmental data by using their sensors and send them...
متن کاملAn Adaptive Congestion Alleviating Protocol for Healthcare Applications in Wireless Body Sensor Networks: Learning Automata Approach
Wireless Body Sensor Networks (WBSNs) involve a convergence of biosensors, wireless communication and networks technologies. WBSN enables real-time healthcare services to users. Wireless sensors can be used to monitor patients’ physical conditions and transfer real time vital signs to the emergency center or individual doctors. Wireless networks are subject to more packet loss and congestion. T...
متن کاملOptimizing the Event-based Method of Localization in Wireless Sensor Networks
A Wireless Sensor Network (WSN) is a wireless decentralized structure network consists of many nodes. Nodes can be fixed or mobile. WSN applications typically observe some physical phenomenon through sampling of the environment so determine the location of events is an important issue in WSN. Wireless Localization used to determine the position of nodes. The precise localization in WSNs is a co...
متن کاملMulticast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach
Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...
متن کامل